Differentially-dimensioned furrow formation by zygotic gene expression and the MBT
نویسندگان
چکیده
Despite extensive work on the mechanisms that generate plasma membrane furrows, understanding how cells are able to dynamically regulate furrow dimensions is an unresolved question. Here, we present an in-depth characterization of furrow behaviors and their regulation in vivo during early Drosophila morphogenesis. We show that the deepening in furrow dimensions with successive nuclear cycles is largely due to the introduction of a new, rapid ingression phase (Ingression II). Blocking the midblastula transition (MBT) by suppressing zygotic transcription through pharmacological or genetic means causes the absence of Ingression II, and consequently reduces furrow dimensions. The analysis of compound chromosomes that produce chromosomal aneuploidies suggests that multiple loci on the X, II, and III chromosomes contribute to the production of differentially-dimensioned furrows, and we track the X-chromosomal contribution to furrow lengthening to the nullo gene product. We further show that checkpoint proteins are required for furrow lengthening; however, mitotic phases of the cell cycle are not strictly deterministic for furrow dimensions, as a decoupling of mitotic phases with periods of active ingression occurs as syncytial furrow cycles progress. Finally, we examined the turnover of maternal gene products and find that this is a minor contributor to the developmental regulation of furrow morphologies. Our results suggest that cellularization dynamics during cycle 14 are a continuation of dynamics established during the syncytial cycles and provide a more nuanced view of developmental- and MBT-driven morphogenesis.
منابع مشابه
Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition.
Following fertilization, vertebrate embryos delay large-scale activation of the zygotic genome from several hours in fish and amphibians to several days in mammals. Externally developing embryos also undergo synchronous and extraordinarily rapid cell divisions that are accelerated by promiscuous licensing of DNA replication origins, absence of gap phases and cell cycle checkpoints, and preloadi...
متن کاملFunction and dynamics of slam in furrow formation in early Drosophila embryo.
The Drosophila embryo undergoes a developmental transition in the blastoderm stage switching from syncytial to cellular development. The cleavage furrow, which encloses nuclei into cells, is a prominent morphological feature of this transition. It is not clear how the pattern of the furrow array is defined and how zygotic genes trigger the formation and invagination of interphase furrows. A key...
متن کاملGeminin Is Required for Zygotic Gene Expression at the Xenopus Mid-Blastula Transition
In many organisms early development is under control of the maternal genome and zygotic gene expression is delayed until the mid-blastula transition (MBT). As zygotic transcription initiates, cell cycle checkpoints become activated and the tempo of cell division slows. The mechanisms that activate zygotic transcription at the MBT are incompletely understood, but they are of interest because the...
متن کاملAn essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition.
Genetic control of embryogenesis switches from the maternal to the zygotic genome during the maternal-to-zygotic transition (MZT), when maternal mRNAs are destroyed, high-level zygotic transcription is initiated, the replication checkpoint is activated and the cell cycle slows. The midblastula transition (MBT) is the first morphological event that requires zygotic gene expression. The Drosophil...
متن کاملgrp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition.
The 13 syncytial cleavage divisions that initiate Drosophila embryogenesis are under maternal genetic control. The switch to zygotic regulation of development at the midblastula transition (MBT) follows mitosis 13, when the cleavage divisions terminate, transcription increases and the blastoderm cellularizes. Embryos mutant for grp, which encodes Checkpoint kinase 1 (Chk1), are DNA-replication-...
متن کامل